

Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation

PI: Pu-Xian Gao

Department of Materials Science and Engineering & Institute of Materials Science University of Connecticut, Storrs, USA

June 11, 2015

@ DOE-VTO Annual Merit Review Meeting
Washington D.C.

Project ID #: ACE095

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Overall objective:

—To develop a unique class of cost-effective and high performance metal oxide based nano-array catalysts for low temperature (at 150 °C or lower) diesel oxidation

Timeline

- Project start date: 10/01/2014
- Project end date: 12/31/2016
- Percent complete: < 20%

Budget

- Total project funding
 - DOE share: \$1,450,000
 - Contractor share: \$380,139

Barriers

- Barriers addressed
 - Initial Formulation of nanoarray catalysts
 - Assembly of nano-array catalysts with reduced usage of metal oxide and noble metals
 - CO and HCs oxidation tests at low temperature

Team Partners

ORNL, Umicore, and 3D Array Technology LLC

Project Relevance

- Identify and formulate cost-effective and high performance nanoarray based catalysts that are compatible to **low temperature combustion engines** with greater fuel efficiency and consequently lower exhaust temperature conditions
- Low temperatures catalysis challenges:
 - Emissions standards harder to meet
 - 10x higher HCs and CO, new chemistry at low temperature, need new DOC.
- Investigate nano-array based catalysts to improve low Temperature catalysis for emission control
 - ~90% conversion at 150°C or lower
- Fuel economy demands

C. DiMaggio, "ACEC Low Temperature Aftertreatment²⁰ Program", 06/21/2012.

Project Relevance

USDRIVE "The 150°C Challenge" Workshop Report

2013 USDRIVE ACEC Tech Team Roadmap

HPLI NOX HCLI HCCI DCCS Conventional Diesel Local Flame Temperature, K

W. Addy Majewski, Hannu Jääskeläinen, Engine Design for low emission, Dieselnet

Advanced combustion engine technologies:

- Low Temperature Combustion (LTC)
- Dilute Gasoline Combustion
- Clean Diesel Combustion (CDC)

Needs addressed in this project:

- Lower temperature CO oxidation; HC oxidation; and NO_x reduction
- Reduced PGM
- Better thermal stability

Tasks and Approaches

- Tasks in Quarters 1-2, 10/1/2014-3/31/2015
 - Design, assembly and characterization of metal oxide nano-array catalysts
 - Initiation of perovskite and noble metal loading
 - Testing of CO and HCs oxidation over nano-array catalysts

• Approaches:

☐ Synthesis and assembly:

Directly grow and assemble 3D metal oxide nano-array catalysts on honeycomb substrates by in-situ solution and gas phase approaches.

□ Nano-characterization:

Investigate the structure, morphology, chemical properties of nano-array catalysts using a range of microscopy and spectroscopy techniques.

☐ Low Temperature Activity, and Stability:

Explore the catalytic behavior and stability using benchtop reactors , thermal analysis and temperature programmed analysis tools.

In-situ Growth of Nano-arrays onto Honeycomb Monoliths

In-situ growth of nano-array on monolith

Stainless steel

- Free of binders, robustness due to the strong substrate-array adhesion after in-situ growth
- Reduced PGM and other materials usage
- Improved efficiency due to size, shape, and structure

Ren, Gao et al., *Angew. Chem. Int. Ed.*, **2014** , 53(28), 7223–7227. Guo, Ren, Gao et al., *Nano Energy*, **2013**, 2, 873-881. Ren, Gao et al., *J. Mater. Chem. A.*, **2013** , 1, 9897-9906 .

Metal Oxide Nano-array based Catalysts

Solution or vapor phase deposition of the secondary and tertiary components such as ZnO/LSCO noble metal and perovskite nanoparticles. LSCO: (La,Sr)CoO₃ 500nm 100nm ZnO/CeO, decorated 10nm Zn ZnO/LSCO/Pt 7.10 2.10 3.10 5.10 6.10 ZnO/CeO2 core-shell Guo, et al., Nano Energy, 2013.

Project Milestones

• FY15 Quarterly Milestones:

- Q1: Synthesize metal oxide nano-array samples for decoration of perovskites
 - complete
- Q2: Synthesize metal oxide/perovskite nano-array samples for catalytic testing
 - complete
- Q3: Synthesize metal oxide/perovskite/metal nano-array samples for catalytic testing
 - on track
- Q4: Characterize structural characteristics of nano-array catalysts in correlation with the catalytic testing performance
 - on track

Collaborations

Oak Ridge National Laboratory: In-situ spectroscopy characterization of nano-array catalysts with Dr. Zili Wu through Center for Nanophase Materials Science.

- Doped Co₃O₄ catalyst for low temperature propane oxidation.
- Controlled Ni doping enhanced reaction kinetics and catalytic activity.
- A redox reaction mechanism revealed by *in situ* spectroscopy.
- Declined thermal stability with Ni concentration due to NiO segregation.

Ren, Wu, Gao, et al., Appl. Catalysis B, 2015.

Brookhaven National Laboratory: metal oxide and metal loading study, and fine structure and chemical analysis of nano-array catalysts with Chang-Yong Nam through Center for Functional Nanomaterials.

Accomplishments

(Project period: 10/1/2014-03/31/2015)

- 1) Synthesis, characterization and testing of PGM free Co₃O₄ based nano-array based monolithic catalysts.
- 2) Synthesis, characterization and testing of PGM free MnO₂ based nano-array based monolithic catalysts.
- 3) Synthesis, characterization and testing of perovskite and Pt nanoparticles loaded metal oxide nano-array catalysts.
- 4) Formulation and initial testing of promising nano-array based monolithic catalysts with low temperature catalytic oxidation performance toward CO and HCs oxidation.

PGM-free Nano-array Catalysts:

Spinel M_xCo_{3-x}O₄ (M=Co, Ni and Zn)

a) Monolithic integration of nano-arrays on commercialized honeycomb supports; b) Photographs of a piece of monolithic nano-arrays catalyst; c) TEM characterization of the Co_3O_4 nanorrays; HRTEM investigation of d) Co_3O_4 , e) $Ni_{0.5}Co_{2.5}O_4$ and f) $Zn_{0.5}Co_{2.5}O_4$ nano-arrays.

PGM-free Co₃O₄ based Nano-array Catalysts:

Low temperature HC oxidation tunability

a) XPS spectra of $Ni_xCo_{3-x}O_4$ with different Ni/Co ratios; b) enhanced methane combustion with higher Ni concentration; c) Arrhenius plots of $Ni_xCo_{3-x}O_4$ for methane combustion; d) Summary of surface area, apparent activation energy and characteristic reaction temperatures of $Ni_xCo_{3-x}O_4$.

Oxidation Behavior of NiCo₅ and Co₃O₄ Catalysts

- Ni-doped Co₃O₄ (NiCo₅) and Co₃O₄ nanoarray catalysts illustrate a range of activities
 - NiCo₅ catalyst better at C₃H₈
 - Co₃O₄ catalyst better at CO and NO to NO₂
- Under conditions analyzed neither meets the goal of 90% conversion at 150°C
 - ...but no PGM and room for improvement

Low Temperature CO Oxidation of Mesoporous Co₃O₄ Nanoparticles

100% CO conversion

• Low temperature CO oxidation performance of mesoporous Co₃O₄ nanoparticles at normal and moisture condition.

Low Temperature CO Oxidation of Mesoporous MnO₂ loaded Nano-arrays

 Low temperature CO oxidation performance of mesoporous MnO₂ decorated MnO₂ nano-arrays at normal condition

Perovskite loaded Nano-arrays:

Propane Oxidation

- Interface/loading effects: 25°C lower light-off temperature than wash-coated perovskite catalys (LMO loading, 4.3mg);
- Composition effect:
 ZnO/LaBO₃ nano-arrays
 with catalytic activity
 sequence of LaCoO₃>
 LaMnO₃> La₂NiO₄ at the
 initial stage of catalytic
 reaction

Pt/TiO₂ based Nano-array Catalysts:

Propane Oxidation

* Hydrothermal aging: 10% H₂O vapor 800°C,10hours

- 0.3 wt.% Pt loaded TiO_2 and TiO_2 - Al_2O_3 nano-array monoliths: ~ 80% C_3H_8 conversion at ~250°C. SV: 36,000 h⁻¹
- Colloidal deposition better than impregnation in catalyst performance.
- Hydrothermal aging degrades catalytic performance, with Pt/TiO₂-Al₂O₃ better sustained.

Hoang, Guo, Gao, et al., unpublished, 2015.

Future work

- 1) Formulation of selective metal oxide nano-array catalysts with good catalytic oxidation performance at 150 °C or lower.
- 2) Optimized loading of the noble metal and perovskite nanoparticles on selective nano-array catalysts.
- 3) Evaluation of oxidation behavior of nano-array catalysts over CO and HCs oxidation under simulated exhaust atmosphere.
- 4) Assembly of large scale and selective nano-array catalysts for engine testing in FY 16.

Acknowledgements

- Postdoc: Drs. Y. Guo, S. Hoang, W. Tang
 Graduate students: Z. Ren, S. Wang, W. Song, S.-Y. Chen
- Co-PIs: Drs. S. Suib, Y. Guo (UConn), Dr. T. Toops (ORNL),
 Dr. T. Pauly (Umicore), Dr. Y. Guo (3D Array Tech.)
- Collaborators: Drs. Z. Wu, S. Overbury, J. Parks (ORNL),
 Dr. C. Nam, D. Su, H. Chen (BNL)
- Project officers: K. Howden, R. Nine
- DOE/NETL, NSF, DOE Office of Science User Facilities program (ORNL-CNMS, BNL-CFN)